
Locks, Blocks, and Snapshots:
Maximizing Database

Concurrency

Bob Pusateri

Passions:
• Performance Tuning & Troubleshooting
• Very Large Databases
• Storage Engine Internals
• Big Data
• Cloud Architecture
• Teaching & Helping
• #BobFacts

@bobp.bsky.social
@sqlbob
bob@bobpusateri.com
bobpusateri.com
bobpusateri

• Concurrency Basics
• Isolation Levels
• In-Memory OLTP

• The ability for an operation to be broken up into multiple parts that can be
worked on independently

• The ability for multiple operations to access or modify a shared resource at
the same time

• More parts/users == more concurrency!
• Until a limiting factor appears…

• 5 Philosophers, bowls of spaghetti, and forks
• To eat, 2 forks are required
• Can pick up one fork at a time
• Once finished, both forks must

be returned to the table
• When not eating, a philosopher is thinking

https://en.wikipedia.org/wiki/File:An_illustration_of_the_dining_philosophers_problem.png

What if everyone picks up one fork?

https://en.wikipedia.org/wiki/File:An_illustration_of_the_dining_philosophers_problem.png

What if there’s a time limit?

What if someone never gets to eat?

$$

• Preventable Read Phenomena (ANSI-defined*)
 Dirty Reads
 Non-Repeatable Reads
 Phantom Reads

• Lost Updates
• Deadlocks

*ANSI specifies which behaviors to allow at each level, but not how to implement them

New Hampshire Dept. of Transportation

• Reading data that is not yet committed
• Changes are still “in flight” in another process
• You can read data multiple times or not at all
• “But it’s faster!”

https://flic.kr/p/8ihVag

• A.K.A. “Inconsistent Analysis”
• Multiple queries in the same transaction get differing results
• Cause: A different transaction commits changes between reads

• Only affects queries with a predicate (WHERE clause)
• Membership in the result set changes
• Multiple queries using the same predicate in the same transaction return

differing results

• “Update Conflict”
• One user’s update overwrites another user’s (simultaneous) update
• Appears as though the first update never happened

*SQL Server will not permit lost updates in any isolation level

• Two or more tasks block each other
• Each has a lock on a resource that the other task needs a lock on
• SQL Server detects and resolves these by choosing a victim
• Victim is rolled back, releasing all its locks

Process
A

Process
B

Resource 1 Resource 2

• Pessimistic Concurrency
 Conflicts are expected; locks taken to prevent them
 Readers block writers, writers block readers
 Only option available pre-2005

• Optimistic Concurrency
 Conflicts are considered possible, but unlikely
 Row versioning means less locking

• Concurrency Basics
• Isolation Levels
• In-Memory OLTP

• How isolated is my transaction from the effects of other transactions?
• Pessimistic Isolation Levels
 Read Committed [default default]
 Read Uncommitted
 Repeatable Read
 Serializable

• Optimistic Isolation Levels
 Snapshot
 Read Committed Snapshot [alternate default]

https://flic.kr/p/7LjDDL

• DBCC USEROPTIONS

• Can be set at the connection or query level
• Cannot be changed server-wide
• Default default isolation level is READ COMMITTED
• To change at connection level:

• Change applies to all queries for the current connection

SET TRANSACTION ISOLATION LEVEL {READ UNCOMMITTED
| READ COMMITTED | REPEATABLE READ | SNAPSHOT
| SERIALIZABLE } [;]

• To change at the query level, use table hints

• This is on a per-table basis

SELECT column
FROM table WITH (NOLOCK);

• Uses locking to prevent concurrency conflicts
• Classic locking model
 Readers don’t block readers
 Readers block writers
 Writers block readers
 Writers block writers

• PESSIMISTIC – we’re expecting problems

https://technet.microsoft.com/en-us/library/ms186396(v=sql.105).aspx

• Many different lock modes exist
• S = Shared
• X = eXclusive

Database

Table

Page

Row

Database

Table

Page

Row

[S] Shared Lock

[IS] Intent Shared Lock

[IS] Intent Shared Lock

[S] Shared Lock

Database

Table

Page

Row

[S] Shared Lock

[IX] Intent Exclusive Lock OR [IU] Intent Update Lock

[IX] Intent Exclusive Lock OR [IU] Intent Update Lock

[X] Exclusive Lock OR [U] Update Lock

• A.K.A “NOLOCK”
• May read rows multiple times
• May read rows zero times
• May return results that were NEVER true!
• Only applies to SELECT queries
 Ignored if used for data modification queries
 Could cause index corruption if you tried it (since fixed)

Dirty Nonrepeatable Phantom

Yes Yes Yes

(public domain) https://commons.wikimedia.org/wiki/File:8_ball_break_time_lapse.jpg

• “No locks are taken”
 WRONG!
 No shared locks are taken when reading data
 Other locks are still taken as normal

• “It makes this query faster”
 WRONG(ish)!
 Only true if query had a lot of blocking on SELECT statements

• Not a terrible setting, it exists for a reason
• BUT make sure you understand the risks and consequences
• Make sure the business knows this too

• The Default Default Isolation level
• Guarantee: Data that is read is guaranteed to be committed.
 No Dirty Reads
 No other guarantees

Dirty Nonrepeatable Phantom

No Yes Yes

• Ensure only committed data is read by locking
• (Locks only last as long as the read, released immediately after)

Rows already read.
Unlocked.

Row currently being
read. Locked.

Rows not yet read.
Unlocked.

SCAN

https://commons.wikimedia.org/wiki/File:Horizon202.jpg

https://commons.wikimedia.org/wiki/File:Horizon202sketch.png

• Unlocked rows can move at any time

Rows already read.
Unlocked.

Row currently being
read. Locked.

Rows not yet read.
Unlocked.

SCAN

• Unlocked rows can move at any time

Rows already read.
Unlocked.

Row currently being
read. Locked.

Rows not yet read.
Unlocked.

SCAN

• Builds on READ COMMITTED
• If a query is repeated within the same transaction, records read the first

time will not change
• Once a row is read, locks are held for length of the transaction
 Even rows that don’t qualify as results

• These locks will not stop additional rows from being added or included in
subsequent queries

Dirty Nonrepeatable Phantom

No No Yes

Harold Edgerton Archive, MIT

• Once read, rows are locked for duration of transaction

Rows already read.
Locked.

Row currently being
read. Locked.

Rows not yet read.
Unlocked.

SCAN

• On a second scan, new rows may enter

Rows already read.
Locked.

Row currently being
read. Locked.

Rows not yet read.
Unlocked.

SCAN

• Builds on REPEATABLE READ
• If a query is repeated within the same transaction, results will be the same
• No data seen previously will change; no new results will appear
• We now need to lock data that doesn’t exist!

Dirty Nonrepeatable Phantom

No No No

• Key-range locks
• Prevent phantom reads by defining a range that other transactions cannot

insert rows within
• If you select a row/range that doesn’t exist, that gets locked too

• Range Locks cover the entire range AND the first row outside it

Rows already read.
Locked.

Row currently being
read. Locked.

Rows not yet read.
Locked.

RANGE BEING SELECTED

First key outside
range. Locked.

• Uses row versioning to prevent concurrency conflicts
• Fewer locks are needed, so blocking is reduced
 Readers no longer block writers
 Writers no longer block readers
 Writers still block writers

• Uses a version store to do this
• Version Store lives in tempdb
• Remember, it’s OPTIMISTIC!

• Whenever a row is updated, previous version is stored in the version store
• New version of row has a pointer to the previous version
• Versions are stored for as long as operations exist that might need them
 All versions of rows modified by a transaction must be kept for as long as that

transaction is open

Current Version
(ID=6, Val=4) [T=n]

Previous Version
(ID=6, Val=7) [T=n-1]

Previous Version
(ID=6, Val=9) [T=n-5]

T=9

T=9

T=5 T=1

T=1

T=1T=5

T=4

T=9

T=9

T=5 T=1

T=1

T=1T=5

T=4

Current State

T=9

T=9

T=5 T=1

T=1

T=1T=5

T=4

State at T=7

T=9

T=9

T=5 T=1

T=1

T=1T=5

T=4

State at T=4

• Same guarantees as READ COMMITTED, just an optimistic implementation
• Statement-level snapshot isolation
 Queries will see the most recent committed values as of the beginning of that

statement (not the transaction)

Dirty Nonrepeatable Phantom

No Yes Yes

T=5 T=1

T=1

T=1T=5

T=4

State at T=7

Statement
sees this:

T=9

T=9

T=5 T=1

T=1

T=1T=5

T=4

State at T=7

Statement
sees this:

Update Occurs!
Updater is not blocked.
Statement continues to read same version.

• When enabled, RCSI becomes the default isolation level for this database.
• Command will block if DB has other connections
 NO_WAIT will prevent blocking and just fail instead
 ROLLBACK_IMMEDIATE will rollback other transactions

Dirty Nonrepeatable Phantom

No Yes Yes

ALTER DATABASE <DB_NAME>
SET READ_COMMITTED_SNAPSHOT ON
[WITH (NO_WAIT | ROLLBACK IMMEDIATE)];

• Same guarantees as SERIALIZABLE, just an optimistic implementation
• Transaction-level snapshot isolation
 Queries will see the most recent committed values as of the beginning of that

transaction (the first data read in it)

Dirty Nonrepeatable Phantom

No No No

• First statement merely allows snapshot isolation

Dirty Nonrepeatable Phantom

No No No

ALTER DATABASE <DB_NAME>
SET ALLOW_SNAPSHOT_ISOLATION ON;

SET TRANSACTION ISOLATION LEVEL SNAPSHOT;

• Process 1 reads data in a transaction, does not commit
• Process 2 reads/updates same data, does not commit
• Process 1’s snapshot does not see Process 2’s update
• Process 1 tries to update, gets blocked
• As soon as Process 2 commits, Process 1 errors out
• This will raise error 3960 on process 1

https://flic.kr/p/4WHW81

• Everything I’ve covered here behaves the same in Azure SQL Database
• Exception: RCSI is enabled by default

• Concurrency Basics
• Isolation Levels
• In-Memory OLTP

• This could be its own presentation by itself
• Optimistic multi-version concurrency control
 No locks required at any time
 (Not even for data modification)
 No waiting because of blocking!
 No latches or spinlocks either

• Waits can still occur….
 (Waiting for log writes to disk following a transaction)

• No existing row is ever modified
 UPDATE creates a new version of a row
 There may be multiple versions in play at once

• Transactions needing to read are presented with the correct version

10 <inf> 1 Red

Begin
Time

End
Time Data Columns

10 <inf> 3 Green

Now at time 20, let’s:
Delete (1, Red)
Update (3, Green) to (3, Blue)
Insert (6, Pink)

10 20 1 Red

10 20 3 Green

20 <inf> 3 Blue

20 <inf> 6 Pink

Begin
Time

End
Time Data Columns

• Craig Freedman’s posts on SQL Server Isolation Levels
https://blogs.msdn.microsoft.com/craigfr/tag/isolation-levels/

• SQL Server Concurrency: Locking, Blocking, and Row Versioning
(Kalen Delaney, Simple Talk Publishing)

• Myths and Misconceptions about Transaction Isolation Levels
http://www.sqlpassion.at/archive/2014/01/21/myths-and-misconceptions-about-transaction-isolation-levels/

https://blogs.msdn.microsoft.com/craigfr/tag/isolation-levels/
http://www.sqlpassion.at/archive/2014/01/21/myths-and-misconceptions-about-transaction-isolation-levels/

@sqlbob

bob@bobpusateri.com

bobpusateri.com

bobpusateri

@bobp.bsky.social

	Locks, Blocks, and Snapshots:�Maximizing Database�Concurrency
	About Bob Pusateri
	Agenda
	Concurrency Basics: What Is Concurrency?
	The Dining Philosophers Problem
	The Dining Philosophers Problem
	The Dining Philosophers Problem
	Concurrency Conflicts
	Dirty Reads
	Non-repeatable Reads
	Phantom Reads
	Lost Updates
	Deadlocks
	Ways to Address These Issues
	Agenda
	Isolation Levels
	Finding the Current Isolation Level
	Changing Isolation Levels
	Changing Isolation Levels
	Pessimistic Concurrency
	Lock Modes
	Lock Hierarchy 101
	Lock Hierarchy 101: Read Operations
	Lock Hierarchy 101: Write Operations
	Read Uncommitted
	Read Uncommitted
	Read Uncommitted Myths
	Demo
	Read Uncommitted
	Read Committed
	Read Committed
	Let’s Talk Photography: Swing Lens Cameras
	Slide Number 37
	Read Committed
	Read Committed
	Demo
	Repeatable Read
	Repeatable Read
	Repeatable Read
	Repeatable Read
	Demo
	Serializable
	Serializable
	Serializable
	Serializable
	Demo
	Optimistic Concurrency
	Row Versioning
	Row Versioning
	Row Versioning
	Row Versioning
	Row Versioning
	Row Versioning
	Read Committed Snapshot
	Read Committed Snapshot
	Read Committed Snapshot
	Read Committed Snapshot
	Demo
	Snapshot
	Snapshot
	Snapshot Update Conflicts
	Demo
	Azure SQL Database
	Agenda
	Memory-Optimized Tables
	Memory-Optimized Tables
	Memory-Optimized Tables
	Resources
	Questions?

